



Serge 600 Blockout Solar - oyster shell (033001)

Technische Informationen

Webbreiten		300 cm	
Zusammensetzung		Glasfaser 42% - PVC 58%	
Öffnungsfaktor NBN EN 410		3.00%	
Gewicht	NF EN 12127	645.00 g/m²	
Dicke	ISO 5084	0.70 mm	
Dichte	ISO 7211/2	KETTE 18.00 yarn/cm SCHUSS 14.00 yarn/cm	
Farbechtheit gegenüber künstlicher Bewitterung	ISO 105 B04	>7	
Luftdurchlässigkeit	ISO 9237	0	
Rollenlänge		30 m	
Reinigung		Mit Seifenwasser	
Konfektion		Durch Hitze-, Hochfrequenz- oder Ultraschallschweißen	
Brandschutzklasse			
L Deutschland	DIN 4102	awaiting test results	
L UK BS 5867		awaiting test results	
L USA NFPA 701		awaiting test results	
L Frankreich NF P92-503		M2	
L Italien UNI 9177		Class 1	

Serge 600 Blockout Sola (033001)	r - oyster shell		Technische Informationen
Reißfestigkeit	ISO 4674-1 methode 2		
^L Original		KETTE 9.00 daN	SCHUSS 9.90 daN
L Nach Klimakammer -30°C		KETTE 10.00 daN	SCHUSS 11.00 daN
Nach Klimakammer +70°C		KETTE 9.80 daN	SCHUSS 10.00 daN
Bruchdehnung	ISO 1421		
^L Original		KETTE 5.70 %	SCHUSS 7.90 %
L Nach Farbechtheit gegenüber kün	stlicher	KETTE 5.90 %	SCHUSS 6.70 %
L Nach Klimakammer -30°C		KETTE 5.50 %	SCHUSS 6.40 %
Nach Klimakammer +70°C		KETTE 5.90 %	SCHUSS 6.20 %
Bruchfestigkeit	ISO 1421		
^L Original		KETTE 205.70 daN/	/5cm SCHUSS 169.80 daN/5cm
L Nach Farbechtheit gegenüber kün	stlicher	KETTE 200.10 daN/	/5cm SCHUSS 154.60 daN/5cm
L Nach Klimakammer -30°C		KETTE 210.00 daN/	/5cm SCHUSS 210.00 daN/5cm
Nach Klimakammer +70°C		KETTE 215.30 daN/	/5cm SCHUSS 147.20 daN/5cm
Empfehlungen		Zur Verwendung in S	Sonnenschutzsystemen mit Zipscreens.

Vorderseite - Innen	Serge 600 Blockout Solar - oyster shell (033001)		
Optische Eigenschaften			
Tv = Lichtdurchlässigkeit	0.20%		
Tuv = UV-Durchlässigkeit	4.90%		

Solarenergetische Eigenschaften		
As = solarer Strahlungsabsorptionswert 76.90%		
Rs = solarer Strahlungsreflektionswert 18.20%		
Ts = solarer Strahlungstransmissionswert 4.90%		

Stoff + Verglasung: G-Faktor				
	G	Те	Qi	sc
Verglasungstyp A	0.56	0.04	0.52	0.66
Verglasungstyp B	0.57	0.03	0.54	0.76
Verglasungstyp C	0.50	0.03	0.47	0.84
Verglasungstyp D	0.29	0.01	0.27	0.90

 $G = Gesamtenergiedurchlass \ / \ Te = Direkter \ Strahlungstransmissionswert \ / \ Qi = Sekundärer \ Wärme "übergangsfaktor \ / \ SC = Verschattungs-Koeffizient$

Visueller Komfort			
Normale Strahlungstransmission	Class 4	Sehr gute Wirkung	
Blendschutz	Class 2	Mäßige Wirkung	
Privatsphäre bei Nacht	Class 2	Mäßige Wirkung	
Sichtkontakt zur Außenwelt	Class 2	Mäßige Wirkung	
Tageslichtnutzung	Class 1	Geringe Wirkung	

G-Faktor des thermischen Komforts = Gesamtdurchlässigkeit für Sonnenenergie			
Verglasungstyp A Verglasungstyp B Verglasungstyp C Verglasungstyp D			
Class 0	Class 0	Class 1	Class 2

Wärmekomfort Qi-Faktor = Sekundärer Wärmeübertragungsfaktor			
Verglasungstyp A Verglasungstyp B Verglasungstyp C Verglasungstyp D			
Class 0 Class 0 Class 1			

 $Class\ 0 = Sehr\ geringe\ Wirkung\ /\ 1 = Geringe\ Wirkung\ /\ 2 = M\"{a}\\ \&ige\ Wirkung\ /\ 3 = Gute\ Wirkung\ /\ 4 = Sehr\ gute\ Wirkung\ Wirkung\ /\ 4 = Sehr\ gute\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirk$

Rückseite - Innen	Serge 600 Blockout Solar - oyster shell (033001)		
Optische Eigenschaften			
Tv = Lichtdurchlässigkeit	0.20%		
Tuv = UV-Durchlässigkeit	4.90%		

Solarenergetische Eigenschaften		
As = solarer Strahlungsabsorptionswert 73.30%		
Rs = solarer Strahlungsreflektionswert 21.80%		
Ts = solarer Strahlungstransmissionswert 4.90%		

Stoff + Verglasung: G-Faktor				
	G	Те	Qi	sc
Verglasungstyp A	0.54	0.04	0.50	0.64
Verglasungstyp B	0.56	0.04	0.52	0.73
Verglasungstyp C	0.49	0.03	0.46	0.83
Verglasungstyp D	0.28	0.01	0.27	0.89

 $G = Gesamtenergiedurchlass \ / \ Te = Direkter \ Strahlungstransmissionswert \ / \ Qi = Sekundärer \ Wärme "übergangsfaktor \ / \ SC = Verschattungs-Koeffizient$

Visueller Komfort			
Normale Strahlungstransmission	Class 4	Sehr gute Wirkung	
Blendschutz	Class 2	Mäßige Wirkung	
Privatsphäre bei Nacht	Class 2	Mäßige Wirkung	
Sichtkontakt zur Außenwelt	Class 2	Mäßige Wirkung	
Tageslichtnutzung	Class 1	Geringe Wirkung	

G-Faktor des thermischen Komforts = Gesamtdurchlässigkeit für Sonnenenergie				
Verglasungstyp A Verglasungstyp B Verglasungstyp C Verglasungstyp D				
Class 3	Class 3	Class 4	Class 4	

Wärmekomfort Qi-Faktor = Sekundärer Wärmeübertragungsfaktor			
Verglasungstyp A Verglasungstyp B Verglasungstyp C Verglasungstyp D			
Class 2	Class 3	Class 3	Class 3

 $Class\ 0 = Sehr\ geringe\ Wirkung\ /\ 1 = Geringe\ Wirkung\ /\ 2 = M\"{a}\\ \&ige\ Wirkung\ /\ 3 = Gute\ Wirkung\ /\ 4 = Sehr\ gute\ Wirkung\ Wirkung\ /\ 4 = Sehr\ gute\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirk$

Vorderseite - Außen	Serge 600 Blockout Solar - oyster shell (033001)	
Optische Eigenschaften		
Tv = Lichtdurchlässigkeit	0.20%	
Tuv = UV-Durchlässigkeit	4.90%	

Solarenergetische Eigenschaften		
As = solarer Strahlungsabsorptionswert 76.90%		
Rs = solarer Strahlungsreflektionswert 18.20%		
Ts = solarer Strahlungstransmissionswert 4.90%		

Stoff + Verglasung: G-Faktor				
	G	Те	Qi	sc
Verglasungstyp A	0.15	0.04	0.11	0.18
Verglasungstyp B	0.12	0.04	0.08	0.15
Verglasungstyp C	0.07	0.03	0.05	0.12
Verglasungstyp D	0.06	0.01	0.04	0.18

 $G = Gesamtenergiedurchlass \ / \ Te = Direkter \ Strahlungstransmissionswert \ / \ Qi = Sekundärer \ Wärme "übergangsfaktor \ / \ SC = Verschattungs-Koeffizient$

Visueller Komfort			
Normale Strahlungstransmission	Class 4	Sehr gute Wirkung	
Blendschutz	Class 2	Mäßige Wirkung	
Privatsphäre bei Nacht	Class 2	Mäßige Wirkung	
Sichtkontakt zur Außenwelt	Class 2	Mäßige Wirkung	
Tageslichtnutzung	Class 1	Geringe Wirkung	

G-Faktor des thermischen Komforts = Gesamtdurchlässigkeit für Sonnenenergie				
Verglasungstyp A Verglasungstyp B Verglasungstyp C Verglasungstyp D				
Class 2	Class 3	Class 4	Class 4	

Wärmekomfort Qi-Faktor = Sekundärer Wärmeübertragungsfaktor				
Verglasungstyp A Verglasungstyp B Verglasungstyp C Verglasungstyp D				
Class 2	Class 3	Class 3	Class 3	

 $Class\ 0 = Sehr\ geringe\ Wirkung\ /\ 1 = Geringe\ Wirkung\ /\ 2 = M\"{a}\\ \&ige\ Wirkung\ /\ 3 = Gute\ Wirkung\ /\ 4 = Sehr\ gute\ Wirkung\ Wirkung\ /\ 4 = Sehr\ gute\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirk$

Rückseite - Außen	Serge 600 Blockout Solar - oyster shell (033001)		
Optische Eigenschaften			
Tv = Lichtdurchlässigkeit	0.20%		
Tuv = UV-Durchlässigkeit	4.90%		

Solarenergetische Eigenschaften		
As = solarer Strahlungsabsorptionswert 73.30%		
Rs = solarer Strahlungsreflektionswert 21.80%		
Ts = solarer Strahlungstransmissionswert 4.90%		

Stoff + Verglasung: G-Faktor				
	G	Те	Qi	sc
Verglasungstyp A	0.15	0.04	0.11	0.17
Verglasungstyp B	0.11	0.03	0.08	0.15
Verglasungstyp C	0.07	0.03	0.05	0.12
Verglasungstyp D	0.06	0.01	0.04	0.18

 $G = Gesamtenergiedurchlass \ / \ Te = Direkter \ Strahlungstransmissionswert \ / \ Qi = Sekundärer \ W\"{a}rme\"{u}bergangsfaktor \ / \ SC = Verschattungs-Koeffizient$

Visueller Komfort			
Normale Strahlungstransmission	Class 4	Sehr gute Wirkung	
Blendschutz	Class 2	Mäßige Wirkung	
Privatsphäre bei Nacht	Class 2	Mäßige Wirkung	
Sichtkontakt zur Außenwelt	Class 2	Mäßige Wirkung	
Tageslichtnutzung	Class 1	Geringe Wirkung	

G-Faktor des thermischen Komforts = Gesamtdurchlässigkeit für Sonnenenergie				
Verglasungstyp A	Verglasungstyp B	Verglasungstyp C	Verglasungstyp D	
Class 3	Class 3	Class 4	Class 4	

Wärmekomfort Qi-Faktor = Sekundärer Wärmeübertragungsfaktor				
Verglasungstyp A	Verglasungstyp B	Verglasungstyp C	Verglasungstyp D	
Class 2	Class 3	Class 3	Class 3	

 $Class\ 0 = Sehr\ geringe\ Wirkung\ /\ 1 = Geringe\ Wirkung\ /\ 2 = M\"{a}\\ \'{B}ige\ Wirkung\ /\ 3 = Gute\ Wirkung\ /\ 4 = Sehr\ gute\ Wirkung\ Wirkung\ /\ 4 = Sehr\ gute\ Wirkung\ /\ 4 = Sehr\ gute\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ /\ 4 = Sehr\ gute\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ Wirkung\ W$